3.504 \(\int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\sqrt {a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=195 \[ \frac {(8 A-4 B+7 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 \sqrt {a} d}-\frac {\sqrt {2} (A-B+C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {(4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}} \]

[Out]

1/4*(8*A-4*B+7*C)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)-(A-B+C)*arctan(1/2*sin(d*x+c)*a^
(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+1/2*C*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(
a+a*cos(d*x+c))^(1/2)+1/4*(4*B-C)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.63, antiderivative size = 195, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {3045, 2983, 2982, 2782, 205, 2774, 216} \[ \frac {(8 A-4 B+7 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 \sqrt {a} d}-\frac {\sqrt {2} (A-B+C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {(4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((8*A - 4*B + 7*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*Sqrt[a]*d) - (Sqrt[2]*(A - B +
C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + ((4*B -
 C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (C*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d
*Sqrt[a + a*Cos[c + d*x]])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2983

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(B*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(f*(
m + n + 1)), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c*(
m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && (I
ntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3045

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*
sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x
])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b*B*
d*(m + n + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] &&
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {\int \frac {\sqrt {\cos (c+d x)} \left (\frac {1}{2} a (4 A+3 C)+\frac {1}{2} a (4 B-C) \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx}{2 a}\\ &=\frac {(4 B-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {\int \frac {\frac {1}{4} a^2 (4 B-C)+\frac {1}{4} a^2 (8 A-4 B+7 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=\frac {(4 B-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+(-A+B-C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx+\frac {(8 A-4 B+7 C) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{8 a}\\ &=\frac {(4 B-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {(2 a (A-B+C)) \operatorname {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {(8 A-4 B+7 C) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 a d}\\ &=\frac {(8 A-4 B+7 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 \sqrt {a} d}-\frac {\sqrt {2} (A-B+C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {(4 B-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.22, size = 431, normalized size = 2.21 \[ \frac {\cos \left (\frac {1}{2} (c+d x)\right ) \left (\frac {4 \sin \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} (4 B+2 C \cos (c+d x)-C)}{d}+\frac {\sqrt {2} e^{\frac {1}{2} i (c+d x)} \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (8 i \sqrt {2} (A-B+C) \log \left (1+e^{i (c+d x)}\right )-i (8 A-4 B+7 C) \sinh ^{-1}\left (e^{i (c+d x)}\right )+8 i A \log \left (1+\sqrt {1+e^{2 i (c+d x)}}\right )-8 i \sqrt {2} A \log \left (\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )+8 A d x-4 i B \log \left (1+\sqrt {1+e^{2 i (c+d x)}}\right )+8 i \sqrt {2} B \log \left (\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )-4 B d x+7 i C \log \left (1+\sqrt {1+e^{2 i (c+d x)}}\right )-8 i \sqrt {2} C \log \left (\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )+7 C d x\right )}{d \sqrt {1+e^{2 i (c+d x)}}}\right )}{8 \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Cos[(c + d*x)/2]*((Sqrt[2]*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(8*A*d*x - 4*B
*d*x + 7*C*d*x - I*(8*A - 4*B + 7*C)*ArcSinh[E^(I*(c + d*x))] + (8*I)*Sqrt[2]*(A - B + C)*Log[1 + E^(I*(c + d*
x))] + (8*I)*A*Log[1 + Sqrt[1 + E^((2*I)*(c + d*x))]] - (4*I)*B*Log[1 + Sqrt[1 + E^((2*I)*(c + d*x))]] + (7*I)
*C*Log[1 + Sqrt[1 + E^((2*I)*(c + d*x))]] - (8*I)*Sqrt[2]*A*Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I
)*(c + d*x))]] + (8*I)*Sqrt[2]*B*Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]] - (8*I)*Sqrt
[2]*C*Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]]))/(d*Sqrt[1 + E^((2*I)*(c + d*x))]) + (
4*Sqrt[Cos[c + d*x]]*(4*B - C + 2*C*Cos[c + d*x])*Sin[(c + d*x)/2])/d))/(8*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 28.66, size = 193, normalized size = 0.99 \[ \frac {{\left (2 \, C \cos \left (d x + c\right ) + 4 \, B - C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left ({\left (8 \, A - 4 \, B + 7 \, C\right )} \cos \left (d x + c\right ) + 8 \, A - 4 \, B + 7 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \frac {4 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right ) + {\left (A - B + C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{4 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((2*C*cos(d*x + c) + 4*B - C)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - ((8*A - 4*B + 7*C
)*cos(d*x + c) + 8*A - 4*B + 7*C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x
+ c))) + 4*sqrt(2)*((A - B + C)*a*cos(d*x + c) + (A - B + C)*a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(c
os(d*x + c))/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/sqrt(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 0.46, size = 421, normalized size = 2.16 \[ -\frac {\left (-1+\cos \left (d x +c \right )\right )^{3} \left (4 B \sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}+4 B \sin \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}+2 C \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+4 A \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sqrt {2}-4 B \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sqrt {2}+4 C \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sqrt {2}-C \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+8 A \cos \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )-4 B \cos \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )+7 C \cos \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\cos ^{\frac {3}{2}}\left (d x +c \right )\right )}{4 d \sin \left (d x +c \right )^{6} \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x)

[Out]

-1/4/d*(-1+cos(d*x+c))^3*(4*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+4*B*sin(d*x+c)*(cos(d*x+
c)/(1+cos(d*x+c)))^(3/2)+2*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+4*A*arcsin((-1+cos(d*x+
c))/sin(d*x+c))*cos(d*x+c)*2^(1/2)-4*B*arcsin((-1+cos(d*x+c))/sin(d*x+c))*cos(d*x+c)*2^(1/2)+4*C*arcsin((-1+co
s(d*x+c))/sin(d*x+c))*cos(d*x+c)*2^(1/2)-C*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+8*A*cos(d*x
+c)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))-4*B*cos(d*x+c)*arctan(sin(d*x+c)*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+7*C*cos(d*x+c)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*
x+c)))*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(3/2)/sin(d*x+c)^6/(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)/a

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: sign: argument cannot be imaginary
; found %i

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________